If it's not what You are looking for type in the equation solver your own equation and let us solve it.
34-18x+2x^2=0
a = 2; b = -18; c = +34;
Δ = b2-4ac
Δ = -182-4·2·34
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{13}}{2*2}=\frac{18-2\sqrt{13}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{13}}{2*2}=\frac{18+2\sqrt{13}}{4} $
| 1/49=x^-2 | | T(h)=30.5-2.5h | | 12/6=2/x | | 8-9d=5d-8d-4 | | 6(6g-3)+8(1-5g)=2g | | 7x-9x—6=21—5 | | 40x+32=6 | | 6=4w+42 | | y+27y=0 | | H(1)=-16(x)^2+68x+4 | | -4(3x-7)(4x+1)=0 | | 2v+7=3.v= | | |3-2x|=3x-2 | | 45=9(-9+7)+3a | | 7x+18x-3=5(5x+1) | | )7x-9x—6=21—5 | | -32=54-2c | | 1/2x+3=10.5 | | g/8+45=55 | | (4x-25)=(2x-1 | | -67x=6-1 | | (4x-25)°=(2x-1)° | | 9+n/10=7 | | q-84/9=1 | | 1+7m=106 | | 4x^2+19x=−12 | | 7=h/3+4 | | v/2-8=-14 | | 4(x−9)=8(x+3) | | -4x+4=-64 | | 4(5x+9)=56 | | 23x+10=x+20 |